SOLVING MORE COMPLICATED QUADRATIC EQUATIONS BY **FACTORING**

• Need some basic practice with quadratic equations first? **Identifying Quadratic Equations** Writing Quadratic Equations in Standard Form Solving Simple Quadratic Equations by Factoring

(more mathematical cats)

To solve a <u>quadratic equation</u> by factoring:

- put it in standard form: $ax^2 + bx + c = 0$
- <u>factor the left-hand side</u>
- use the Zero Factor Law

EXAMPLES:

Solve: $3x^2 = 5 - 14x$

Solution:

Write a nice, clean list of equivalent equations:

$$3x^2 = 5 - 14x$$

(original equation)

$$3x^2 + 14x - 5 = 0$$

(put in standard form: subtract 5 from both sides; add 14x to both

$$(3x-1)(x+5)=0$$

(factor the left-hand side; you may want to use the factor by

grouping method)

$$3x - 1 = 0$$
 or $x + 5 = 0$

(use the Zero Factor Law)

$$3x = 1$$
 or $x = -5$

(solve the simpler equations)

$$x = \frac{1}{3} \quad \text{or} \quad x = -5$$

(solve the simpler equations)

Check by substituting into the original equation:

$$3(\frac{1}{3})^2 \stackrel{?}{=} 5 - 14(\frac{1}{3})$$

$$3\left(\frac{1}{3}\right)^2 \stackrel{?}{=} 5 - 14\left(\frac{1}{3}\right); \quad 3 \cdot \frac{1}{9} \stackrel{?}{=} \frac{15}{3} - \frac{14}{3}; \quad \frac{1}{3} = \frac{1}{3};$$
 Check!

$$3(-5)^2 \stackrel{?}{=} 5 - 14(-5); \quad 3 \cdot 25 \stackrel{?}{=} 5 + 70; \quad 75 = 75;$$
 Check!

$$3 \cdot 25 \stackrel{?}{=} 5 + 70;$$

$$75 = 75;$$
 C

Solve: (2x+3)(5x-1)=0

Solution:

Note: Don't multiply it out!

If it's already in factored form, with zero on one side,

then be happy that a lot of the work has already been done for you.

$$(2x+3)(5x-1) = 0$$
 (original equation)

$$2x + 3 = 0$$
 or $5x - 1 = 0$ (use the Zero Factor Law)

$$2x = -3$$
 or $5x = 1$ (solve the simpler equations)

$$x = -\frac{3}{2}$$
 or $x = \frac{1}{5}$ (solve the simpler equations)

Check by substituting into the original equation:

$$(2(-\frac{3}{2})+3)(5(-\frac{3}{2})-1) \stackrel{?}{=} 0; \quad 0=0;$$
 Check!

$$(2(\frac{1}{5})+3)(5(\frac{1}{5})-1) \stackrel{?}{=} 0; \quad 0=0;$$
 Check!

Solve: $10x^2 - 11x - 6 = 0$

Solution:

Note that it's already in standard form.

$$10x^2 - 11x - 6 = 0$$
 (original equation)

$$(5x+2)(2x-3) = 0$$
 (factor the left-hand side; you may want to use the factor by grouping method)

$$5x + 2 = 0$$
 or $2x - 3 = 0$ (use the Zero Factor Law)

$$5x = -2$$
 or $2x = 3$ (solve the simpler equations)

$$x = -\frac{2}{5}$$
 or $x = \frac{3}{2}$ (solve the simpler equations)

Check by substituting into the original equation:

$$10(-\frac{2}{5})^2 - 11(-\frac{2}{5}) - 6 \stackrel{?}{=} 0; \quad 10(\frac{4}{25}) + \frac{22}{5} - 6 \stackrel{?}{=} 0; \quad 2(\frac{4}{5}) + \frac{22}{5} - \frac{30}{5} \stackrel{?}{=} 0; \quad 0 = 0;$$

$$10(\frac{3}{2})^2 - 11(\frac{3}{2}) - 6 \stackrel{?}{=} 0$$
; $10(\frac{9}{4}) - \frac{33}{2} - 6 \stackrel{?}{=} 0$; $5(\frac{9}{2}) - \frac{33}{2} - \frac{12}{2} \stackrel{?}{=} 0$; $0 = 0$; Check!